
SHINE V. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3(Version 1), March 2014, pp.369-372

www.ijera.com 369 | P a g e

Dataset Preparation in Datamining Analysis Using Horizontal

Aggregations

Shine V.
M. Tech Software Engineering Sarabhai Institute of Science & Technology,shineisv736@gmail.com

Abstract
Data mining an interdisciplinary subfield of computer science, is the computational process of discovering

patterns in large data sets involving methods at the intersection of artificial intelligence, machine learning,

statistics, and database systems. The overall goal of the data mining process is to extract information from a

data set and transform it into an understandable structure for further use. Preparing a data set for analysis is

generally the most time consuming task in a data mining project, requiring many complex SQL queries, joining

tables, and aggregating columns. Existing SQL aggregations have limitations to prepare data sets because they

return one column per aggregated group. Horizontal aggregations build data sets with a horizontal de

normalized layout, which is the standard layout required by most data mining algorithms. In this paper proposed

three fundamental methods to evaluate horizontal aggregations: 1. CASE: Exploiting the programming CASE

construct; 2.SPJ: Based on standard relational algebra operators; 3. PIVOT: Using the PIVOT operator, which is

offered by some DBMSs

Keywords: CASE, SPJ, PIVOT

I. INTRODUCTION
In a relational database, especially with

normalized tables, a significant effort is required to

prepare a summary data set that can be used as input

for a data mining or statistical algorithm. Most

algorithms require as input a data set with a

horizontal layout, with several records and one

variable or dimension per column. That is the case

with models like clustering, classification, regression.

This paper introduces a new class of aggregate

functions that can be used to build data sets in a

horizontal layout (de normalized with aggregations),

automating SQL query writing and extending SQL

capabilities. building a suitable data set for data

mining purposes is a time-consuming task. This task

generally requires writing long SQL statements or

customizing SQL code if it is automatically generated

by some tool. There are two main ingredients in such

SQL code: joins and aggregations; focus on the

second one. The most widely known aggregation is

the sum of a column over groups of rows. Some other

aggregations return the average, maximum,

minimum, or row count over groups of rows. There

exist many aggregation functions and operators in

SQL. Unfortunately, all these aggregations have

limitations to build data sets for data mining

purposes. The main reason is that, in general, data

sets that are stored in a relational database (or a data

warehouse) come from Online Transaction

Processing (OLTP) systems where database schemas

are highly normalized. But data mining, statistical, or

machine learning algorithms generally require

aggregated data in summarized form. Based on

current available functions and clauses in SQL, a

significant effort is required to compute aggregations

when they are desired in a cross tabular (horizontal)

form, suitable to be used by a data mining algorithm.

Such effort is due to the amount and complexity of

SQL code that needs to be written, optimized, and

tested. There are further practical reasons to return

aggregation results in a horizontal (cross-tabular)

layout. Standard aggregations are hard to interpret

when there are many result rows, especially when

grouping attributes have high cardinalities. To

perform analysis of exported tables into spreadsheets

it may be more convenient to have aggregations on

the same group in one row (e.g., to produce graphs or

to compare data sets with repetitive information).

OLAP tools generate SQL code to transpose results

Transposition can be more efficient if there are

mechanisms combining aggregation and transposition

together.

In this paper proposed a new class of

aggregate functions that aggregate numeric

expressions and transpose results to produce a data

set with a horizontal layout. Functions belonging to

this class are called horizontal aggregations.

Horizontal aggregations represent an extended form

of traditional SQL aggregations, which return a set of

values in a horizontal layout (somewhat similar to a

multidimensional vector), instead of a single value

per row.

RESEARCH ARTICLE OPEN ACCESS

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Data_set
http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Artificial_intelligence
http://en.wikipedia.org/wiki/Artificial_intelligence

SHINE V. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3(Version 1), March 2014, pp.369-372

www.ijera.com 370 | P a g e

II. ADVANTAGES
The proposed horizontal aggregations

provide several unique features and advantages. First,

they represent a template to generate SQL code from

a data mining tool. Such SQL code automates writing

SQL queries, optimizing them, and testing them for

correctness. This SQL code reduces manual work in

the data preparation phase in a data mining project.

Second, since SQL code is automatically generated it

is likely to be more efficient than SQL code written

by an end user. For instance, a person who does not

know SQL well or someone who is not familiar with

the database schema (e.g., a data mining practitioner).

Therefore, data sets can be created in less time.

Third, the data set can be created entirely inside the

DBMS. In modern database environments, it is

common to export de normalized data sets to be

further cleaned and transformed outside a DBMS in

external tools (e.g., statistical packages).

Unfortunately, exporting large tables outside a

DBMS is slow, creates inconsistent copies of the

same data and compromises database security.

Therefore, provide a more efficient, better integrated

and more secure solution compared to external data

mining tools. Horizontal aggregations just require a

small syntax extension to aggregate functions called

in a SELECT statement. Alternatively, horizontal

aggregations can be used to generate SQL code from

a data mining tool to build data sets for data mining

analysis.

III. Horizontal Aggregations
This paper introduced a new class of

aggregations that have similar behavior to SQL

standard aggregations, but which produce tables with

a horizontal layout. In contrast, call standard SQL

aggregations vertical aggregations since they produce

tables with a vertical layout. Horizontal aggregations

just require a small syntax extension to aggregate

functions called in a SELECT statement.

Alternatively, horizontal

aggregations can be used to generate SQL code from

a data mining tool to build data sets for data mining

analysis.

IV. SQL CODE GENERATION
Main goal is to define a template to generate

SQL code combining aggregation and transposition

(pivoting). A second goal is to extend the SELECT

statement with a clause that combines transposition

with aggregation. Consider the following GROUP

BY query in standard SQL that takes a subset L1 . . .

Lm from D1.Dp.

SELECT L1….Lm, sum(A)

FROM F

GROUP BY L1…..Lm;

This aggregation query will produce a wide

table with m + 1 columns (automatically determined),

with one group for each unique combination of

values L1...Lm and one aggregated value per group

(sum(A) in this case). In order to evaluate this query

the query optimizer takes three input parameters: 1)

the input table F, 2) the list of grouping columns L1 . .

. Lm, 3) the column to aggregate (A).

The basic goal of a horizontal aggregation is

to transpose (pivot) the aggregated column A by a

column subset of L1 . . . ; Lm; for simplicity assume

such subset is R1 . . .Rk where k < m. In other words,

partition the GROUP BY list into two sublists: one

list to produce each group (j columns L1 . . . ;Lj) and

another list (k columns R1 . . .Rk) to transpose

aggregated values, where {L1 . . . Lj} ∩ {R1. . .Rk}=

∅ . Each distinct combination of {R1 . . .Rk} will

automatically produce an output column. In

particular, if k = 1 then there are |πR1(F)|columns

(i.e., each value in R1 becomes a column storing one

aggregation). Therefore, in a horizontal aggregation

there are four input parameters to generate SQL

code:1. the input table F, 2. the list of GROUP BY

columns L1 . . . Lj, 3. the column to aggregate (A), 4.

the list of transposing columns R1 . . .Rk.

V. QUERY EVALUATION METHODS
This paper proposed three methods to

evaluate horizontal aggregations. The first method

relies only on relational operations. That is, only

doing select, project, join, and aggregation queries;

call it the SPJ method. The second form relies on the

SQL “case” construct; call it the CASE method. Each

table has an index on its primary key for efficient join

processing. Additional indexing mechanisms to

accelerate query evaluation is not considered. The

third method uses the built-in PIVOT operator, which

transforms rows to columns (e.g., transposing).

Figsshow an overview of the main steps to be

explained below (for a sum() aggregation).

Main steps of methods based on F (unoptimized

SHINE V. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3(Version 1), March 2014, pp.369-372

www.ijera.com 371 | P a g e

Main steps of methods based on FV (optimized

a) SPJ Method

The SPJ method is interesting from a

theoretical point of view because it is based on

relational operators only. The basic idea is to create

one table with a vertical aggregation for each result

column, and then join all those tables to produce FH.

Then aggregate from F into d projected tables with d

Select-Project-Join-Aggregation queries (selection,

projection, join, aggregation). Each table FI

corresponds to one subgrouping combination and has

{L1 . . Lj}as primary key and an aggregation on A as

the only nonkey column. It is necessary to introduce

an additional table F0, that will be outer joined with

projected tables to get a complete result set. Proposed

two basic sub strategies to compute FH. The first one

directly aggregates from F. The second one computes

the equivalent vertical aggregation in a temporary

table FV grouping by L1 . . . Lj;R1 . . .Rk. Then

horizontal aggregations can be instead computed

from FV , which is a compressed version of F, since

standard aggregations are distributive.

b) CASE Method

For this method, uses the “case”

programming construct available in SQL. The case

statement returns a value selected from a set of values

based on boolean expressions. From a relational

database theory point of view this is equivalent to

doing a simple projection/aggregation query where

each nonkey value is given by a function that returns

a number based on some conjunction of conditions.

Here proposed two basic sub strategies to compute

FH. In a similar manner to SPJ, the first one directly

aggregates from F and the second one computes the

vertical aggregation in a temporary table FV and then

horizontal aggregations are indirectly computed from

FV.

Now presents the direct aggregation method.

Horizontal aggregation queries can be evaluated by

directly aggregating from F and transposing rows at

the same time to produce FH. First,get the unique

combinations of R1 . . .Rk that define the matching

Boolean expression for result columns. The SQL

code to compute horizontal aggregations directly

from F is as follows: observe V() is a standard

(vertical) SQL aggregation that has a “case”

statement as argument. Horizontal aggregations need

to set the result to null when there are no qualifying

rows for the specific horizontal group to be consistent

with the SPJ method and also with the extended

relational model.

c) PIVOT Method

Consider the PIVOT operator which is a

built-in operator in a commercial DBMS. Since this

operator can perform transposition it can help

evaluating horizontal aggregations. The PIVOT

method internally needs to determine how many

columns are needed to store the transposed table and

it can be combined with the GROUP BY clause.

VI. CONCLUSION
Introduced a new class of extended aggregate

functions, called horizontal aggregations which helps

in preparing data sets for data mining and OLAP

cube exploration. Specifically, horizontal

aggregations are useful to create data sets with a

horizontal layout, as commonly required by data

mining algorithms and OLAP cross-tabulation.

Basically, a horizontal aggregation returns a set of

numbers instead of a single number for each group,

resembling a multidimensional vector. Proposed an

abstract, but minimal, extension to SQL standard

aggregate functions to compute horizontal

aggregations which just requires specifying sub

grouping columns inside the aggregation function

call. From a query optimization perspective,

proposed three query evaluation methods. The first

one (SPJ) relies on standard relational operators. The

second one (CASE) relies on the SQL CASE

construct. The third (PIVOT) uses a built in operator

in a commercial DBMS that is not widely available.

The SPJ method is important from a theoretical point

of view because it is based on select, project, and join

(SPJ) queries. The CASE method is most important

contribution. It is in general the most efficient

evaluation method and it has wide applicability since

it can be programmed combining GROUP-BY and

CASE statements. The three methods produce the

same result. It is not possible to evaluate horizontal

aggregations using standard SQL without either joins

or “case” constructs using standard SQL operators.

REFERENCES
[1] Nisha S.,B.Lakshmipathi,” Optimization of

Horizontal Aggregation in SQL by Using K-

Means Clustering” International Journal of

Advanced Research in Computer Science

and Software Engineering Volume 2, Issue

5, May 2012

[2] G. Bhargava, P. Goel, and B.R. Iyer,

“Hypergraph Based Reorderings of Outer

SHINE V. Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 3(Version 1), March 2014, pp.369-372

www.ijera.com 372 | P a g e

Join Queries with Complex Predicates,”

Proc. ACM SIGMOD Int’l Conf.

Management of Data (SIGMOD ’95), pp.

304-315, 1995.

[3] J.A. Blakeley, V. Rao, I. Kunen, A. Prout,

M. Henaire, and C. Kleinerman, “.NET

Database Programmability and Extensibility

in Microsoft SQL Server,” Proc. ACM

SIGMOD Int’l Conf.Management of Data

(SIGMOD ’08), pp. 1087-1098, 2008.

 [4] V.Pradeep Kumar, Dr.R.V.Krishnaiah,

“Horizontal Aggregations in SQL to Prepare

Data Sets for DataMining Analysis”,

International Journal of Advanced Research

in Computer Science and Software

Engineering Volume 6, Issue 5 (Nov. - Dec.

2012).

[5] C. Galindo-Legaria and A. Rosenthal,

“Outer Join Simplification and Reordering

for Query Optimization,” ACM Trans.

Database Systems, vol. 22, no. 1, pp. 43-73,

1997.

[6] G. Graefe, U. Fayyad, and S. Chaudhuri,

“On the Efficient Gathering of Sufficient

Statistics for Classification from Large SQL

Databases,” Proc. ACM Conf. Knowledge

Discovery and Data Mining (KDD ’98), pp.

204-208, 1998.

